Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.017
Filtrar
1.
Sci Rep ; 14(1): 8706, 2024 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622195

RESUMEN

The sustainable management of leftover rice straw through biochar production to mitigate CH4 emissions and enhance rice yield remains uncertain and undefined. Therefore, we evaluated the effects of using biochar derived from rice straw left on fields after harvest on greenhouse gas emissions, global warming potential (GWP), and rice yield in the paddy field. The experiment included three treatments: chemical fertilizer (CF), rice straw (RS, 10 t ha-1) + CF, and rice straw-derived biochar (BC, 3 t ha-1 based on the amount of product remaining after pyrolysis) + CF. Compared with CF, BC + CF significantly reduced cumulative CH4 and CO2 emissions, net GWP, and greenhouse gas emission intensity by 42.9%, 37.4%, 39.5%, and 67.8%, respectively. In contrast, RS + CF significantly increased cumulative CH4 emissions and net GWP by 119.3% and 13.8%, respectively. The reduced CH4 emissions were mainly caused by the addition of BC + CF, which did not increase the levels of dissolved organic carbon and microbial biomass carbon, consequently resulting in reduced archaeal abundance, unlike those observed in RS + CF. The BC + CF also enhanced soil total organic carbon content and rice grain yield. This study indicated that using biochar derived from leftover rice straw mitigates greenhouse gas emissions and improves rice productivity in tropical paddy soil.


Asunto(s)
Carbón Orgánico , Gases de Efecto Invernadero , Oryza , Suelo/química , Calentamiento Global , Agricultura/métodos , Gases de Efecto Invernadero/análisis , Oryza/química , Metano/análisis , Carbono , Óxido Nitroso/análisis
2.
Huan Jing Ke Xue ; 45(5): 2891-2904, 2024 May 08.
Artículo en Chino | MEDLINE | ID: mdl-38629551

RESUMEN

The increasing use of nitrogen fertilizers exerts extreme pressure on the environment (e.g., greenhouse gas emissions, GHGs) for winter wheat-summer maize rotation systems in the North China Plain. The application of controlled-release fertilizers is considered as an effective measure to improve crop yield and nitrogen fertilizer utilization efficiency. To explore the impact of one-time fertilization of controlled-release blended fertilizer on crop yield and GHGs of a wheat-maize rotation system, field experiments were carried out in Dezhou Modern Agricultural Science and Technology Park from 2020 to 2022. Five treatments were established for both winter wheat and summer maize, including no nitrogen control (CK), farmers' conventional nitrogen application (FFP), optimized nitrogen application (OPT), CRU1 (the blending ratio of coated urea and traditional urea on winter wheat and summer maize was 5:5 and 3:7, respectively), and CRU2 (the blending ratio of coated urea and traditional urea on winter wheat and summer maize was 7:3 and 5:5, respectively). The differences in yield, nitrogen fertilizer utilization efficiency, fertilization economic benefits, and GHGs among different treatments were compared and analyzed. The results showed that nitrogen application significantly increased the single season and annual crop yields of the wheat-maize rotation system (P < 0.05). Compared with those of FFP, the CRU1 and CRU2 treatments increased the yields of summer maize by 0.4% to 5.6%, winter wheat by -5.4% to 4.1%, and annual yields by -1.1% to 3.9% (P > 0.05). N recovery efficiency (NRE), N agronomic efficiency (NAE), and N partial factor productivity (NPFP) were increased by -8.6%-43.4%, 2.05-6.24 kg·kg-1, and 4.24-10.13 kg·kg-1, respectively. Annual net income increased by 0.2% to 6.3%. Nitrogen application significantly increased the annual emissions of soil N2O and CO2 in the rotation system (P < 0.05) but had no effect on the annual emissions of CH4 (except for in the FFP treatment in the first year). The annual total N2O emissions under the CRU1 and CRU2 treatments were significantly reduced by 23.4% to 30.2% compared to those under the FFP treatment (P < 0.05). Additionally, nitrogen application significantly increased the annual global warming potential (GWP) of the rotation system (P < 0.05), but the intensity of greenhouse gas emissions was reduced due to the increase in crop yields. Compared with that under FFP, the annual GWP under the CRU1 and CRU2 treatments decreased by 9.6% to 11.5% (P < 0.05), and the annual GHGs decreased by 11.2% to 13.8% (P > 0.05). In summary, the one-time application of controlled-release blended fertilizer had a positive role in improving crop yield and economic benefits, reducing nitrogen fertilizer input and labor costs, and GHGs, which is an effective nitrogen fertilizer management measure to promote cleaner production of food crops in the North China Plain.


Asunto(s)
Gases de Efecto Invernadero , Fertilizantes , Triticum , Zea mays , Preparaciones de Acción Retardada , Óxido Nitroso/análisis , Agricultura/métodos , Suelo , China , Nitrógeno , Urea
3.
Sci Total Environ ; 926: 172133, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38569960

RESUMEN

Evaluating the impact of global warming on rice production and greenhouse gas (GHG) emissions is critical for ensuring food security and mitigating the consequences of climate change. Nonetheless, the impacts of warming on crop production, GHG emissions, and microbial mechanisms in the single-cropping rice systems remain unclear. Here, a two-year field experiment was conducted to explore the effects of warming (increased by 2.7-3.0 °C on average) in the rice growing season on crop production and functional microorganisms associated with GHG emissions. Results showed that warming resulted in significant reduction (p < 0.01) in the aboveground biomass and grain yield as well as in grain weight, the number of spikelets per panicle, and the seed-setting rate. However, it caused a significant increase (p < 0.01) in the number of panicles by 15.6 % and 34.9 %, respectively. Furthermore, warming significantly increased (p < 0.01) seasonal methane (CH4) emissions but reduced nitrous oxide (N2O) emissions, particularly in 2022.The relative abundance of genes associated with CH4 metabolism and nitrogen metabolism was increased by 40.7 % and 32.7 %, respectively, in response to warming. Moreover, warming had a positive impact on the abundance of genes related to CH4 production and oxidation processes but did not affect the denitrification processes associated with N2O production. These results showed that warming decreased rice yield and biomass in the single cropping rice system but increased CH4 emissions and global warming potential. Taken together, to address the increasing food demand of a growing population and mitigate the impacts of global warming, it is imperative to duce GHG emissions and enhance crop yields.


Asunto(s)
Gases de Efecto Invernadero , Oryza , Gases de Efecto Invernadero/análisis , Oryza/metabolismo , Agricultura/métodos , Calentamiento Global , Producción de Cultivos , Óxido Nitroso/análisis , Metano/análisis , Suelo , China
4.
Proc Natl Acad Sci U S A ; 121(17): e2305517121, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38621135

RESUMEN

Growing crops in more diverse crop systems (i.e., intercropping) is one way to produce food more sustainably. Even though intercropping, compared to average monocultures, is generally more productive, the full yield potential of intercropping might not yet have been achieved as modern crop cultivars are bred to be grown in monoculture. Breeding plants for more familiarity in mixtures, i.e., plants that are adapted to more diverse communities (i.e., adaptation) or even to coexist with each other (i.e., coadaptation) might have the potential to sustainably enhance productivity. In this study, the productivity benefits of familiarity through evolutionary adaptation and coevolutionary coadaptation were disentangled in a crop system through an extensive common garden experiment. Furthermore, evolutionary and coevolutionary effects on species-level and community-level productivity were linked to corresponding changes in functional traits. We found evidence for higher productivity and trait convergence with increasing familiarity with the plant communities. Furthermore, our results provide evidence for the coevolution of plants in mixtures leading to higher productivity of coadapted species. However, with the functional traits measured in our study, we could not fully explain the productivity benefits found upon coevolution. Our study investigated coevolution among randomly interacting plants and was able to demonstrate that coadaptation through coevolution of coexisting species in mixtures occurs and promotes ecosystem functioning (i.e., higher productivity). This result is particularly relevant for the diversification of agricultural and forest ecosystems, demonstrating the added value of artificially selecting plants for the communities they are familiar with.


Asunto(s)
Ecosistema , Fitomejoramiento , Agricultura/métodos , Productos Agrícolas , Evolución Biológica
5.
Sci Rep ; 14(1): 7752, 2024 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-38565858

RESUMEN

Understanding the impact of greenhouse gas (GHG) emissions and carbon stock is crucial for effective climate change assessment and agroecosystem management. However, little is known about the effects of organic amendments on GHG emissions and dynamic changes in carbon stocks in salt-affected soils. We conducted a pot experiment with four treatments including control (only fertilizers addition), biochar, vermicompost, and compost on non-saline and salt-affected soils, with the application on a carbon equivalent basis under wheat crop production. Our results revealed that the addition of vermicompost significantly increased soil organic carbon content by 18% in non-saline soil and 52% in salt-affected soil compared to the control leading to improvements in crop productivity i.e., plant dry biomass production by 57% in non-saline soil with vermicompost, while 56% with the same treatment in salt-affected soil. The grain yield was also noted 44 and 50% more with vermicompost treatment in non-saline and salt-affected soil, respectively. Chlorophyll contents were observed maximum with vermicompost in non-saline (24%), and salt-affected soils (22%) with same treatments. Photosynthetic rate (47% and 53%), stomatal conductance (60% and 12%), and relative water contents (38% and 27%) were also noted maximum with the same treatment in non-saline and salt-affected soils, respectively. However, the highest carbon dioxide emissions were observed in vermicompost- and compost-treated soils, leading to an increase in emissions of 46% in non-saline soil and 74% in salt-affected soil compared to the control. The compost treatment resulted in the highest nitrous oxide emissions, with an increase of 57% in non-saline soil and 62% in salt-affected soil compared to the control. In saline and non-saline soils treated with vermicompost, the global warming potential was recorded as 267% and 81% more than the control, respectively. All treatments, except biochar in non-saline soil, showed increased net GHG emissions due to organic amendment application. However, biochar reduced net emissions by 12% in non-saline soil. The application of organic amendments increased soil organic carbon content and crop yield in both non-saline and salt-affected soils. In conclusion, biochar is most effective among all tested organic amendments at increasing soil organic carbon content in both non-saline and salt-affected soils, which could have potential benefits for soil health and crop production.


Asunto(s)
Compostaje , Gases de Efecto Invernadero , Suelo , Agricultura/métodos , Triticum , Carbono , Carbón Orgánico , Cloruro de Sodio , Cloruro de Sodio Dietético , Óxido Nitroso/análisis , Dióxido de Carbono/análisis
6.
GM Crops Food ; 15(1): 150-169, 2024 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38590162

RESUMEN

This article provides an analysis and evaluation of peer-reviewed evidence on the contribution of crop biotechnology to climate change mitigation and adaption. While there is a range of agricultural technologies and products that contribute to climate change mitigation, this literature landscape analysis focuses on the development of genetically modified traits, their use and adoption in major commodity crops and responsive changes in production techniques. Jointly, these technologies and products are contributing to climate change mitigation, yet the technology, the literature and evidence is still evolving as more sophisticated research methods are used with greater consistency. The literature analysis is undertaken with consideration of the consequential impact that regulatory regimes have on technology development. This assessment utilizes the Maryland Scientific Methods Scale and citation analysis, concluding that GM crops provide benefits that contribute to climate change mitigation.


Asunto(s)
Agricultura , Cambio Climático , Agricultura/métodos , Biotecnología , Productos Agrícolas/genética , Maryland
7.
J Environ Manage ; 357: 120763, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38581892

RESUMEN

Agri-environmental programs (AEPs), which pay farmers to adopt conservation practices, are increasingly important environmental and agricultural policy tools used in both the US and the EU. Despite large budgetary shares allocated in a 20-year application window, several studies identify lower-than-expected environmental outcomes. In the US, reasons for low environmental outcomes include low participation rates, lack of program awareness, and poor targeting levels. Research has identified low levels of awareness and variation in participation across the US in the Environmental Quality Incentives Program (EQIP), the largest working lands program in the US. Using a survey of Western US farmers, this paper provides an analysis of awareness and participation levels in cover crop AEPs in the Western US. Second, this paper analyzes motivations and barriers to participation in cover crop AEPs through the Environmental Quality Incentives Program (EQIP) and the Conservation Stewardship Program (CSP). Third, the paper uses a survey experiment to examine different types of incentives. The results highlight that participation is low due to lack of awareness and policy barriers. Using a logistic regression, predictors of AEP participation include frequent contact with NRCS, having a succession plan, and a positive attitude toward governments' role in conservation programs. The survey experiment found that non-financial factors, such as more information on cover crops, is an effective policy incentive.


Asunto(s)
Conservación de los Recursos Naturales , Agricultores , Humanos , Conservación de los Recursos Naturales/métodos , Agricultura/métodos , Motivación , Encuestas y Cuestionarios
8.
J Environ Manage ; 357: 120840, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38583381

RESUMEN

Agriculture and livestock farming are activities that depend on energy consumption. Photovoltaic self-consumption systems can reduce the production costs of these actors, especially in periods of high-energy price volatility. This work aimed to determine the degree of implementation of photovoltaic self-consumption systems, their relationship with the economic impact of the energy crisis, and the perception of producers to use renewable energy sources in the Spanish agricultural system as it is one of the most important at European level. For this purpose, a survey of the Spanish agricultural and livestock system, involving 396 primary producers, was carried out between December 2022 and March 2023. The results suggest that self-consumption systems are in place in 49.1% of all farms and that these have had a positive effect in alleviating the rising energy costs suffered by the Spanish primary sector. In summary, Spanish primary producers generally have a favorable perception of the use of renewable energies on their farms, especially photovoltaic. However, the cluster analysis shows the fact that there are two types of producers, active and passive, from an environmental point of view. The characterization of this type of producers can help the Spanish Administration to improve the efficiency of its energy strategy, and can be a source of inspiration for the governments of other countries.


Asunto(s)
Agricultura , Percepción , Agricultura/métodos , Granjas , Energía Renovable
9.
Int. microbiol ; 27(2): 477-490, Abr. 2024. graf
Artículo en Inglés | IBECS | ID: ibc-232294

RESUMEN

Excessive use of chemicals to enhance soil nutrient status and crop yield has resulted in a decline in soil health. Organic farming promotes organic amendments, which help to balance the ecosystem. Understanding the dynamic patterns of belowground microbial populations is essential for developing sustainable agricultural systems. Therefore, the study was designed to evaluate the effect of different agri-practices on rhizospheric bacterial diversity and crop yield in an Indian agricultural system. A 3-year field experiment was set up in a randomized block design using Cajanus cajan as a model crop, comparing conventional farming with organic practice (with animal manure and bio-compost as amendments). Plant and rhizospheric soil samples were collected at the harvest stage for assessing various growth attributes, and for characterizing rhizospheric bacterial diversity. Enhanced crop productivity was seen in conventional farming, with a 2.2-fold increase in grain yield over control. However, over the 3 years, an overall positive impact was observed in the bio-compost-based organic amendment, in terms of bacterial abundance, over other treatments. At the harvest stage of the third cropping season, the bacterial diversity in the organic treatments showed little similarity to the initial bacterial community composition of the amendment applied, indicating stabilization along the growth cycles. The study emphasizes the significance of the choice of the amendment for ushering in agricultural sustainability.(AU)


Asunto(s)
Humanos , Microbiología del Suelo , Agricultura/métodos , Bacterias , Cajanus/microbiología , Ecosistema , Suelo/química
10.
Proc Natl Acad Sci U S A ; 121(16): e2318160121, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38598339

RESUMEN

Organic carbon availability in soil is crucial for shaping microbial communities, yet, uncertainties persist concerning microbial adaptations to carbon levels and the ensuing ecological and evolutionary consequences. We investigated organic carbon metabolism, antibiotic resistance, and virus-host interactions in soils subjected to 40 y of chemical and organic fertilization that led to contrasting carbon availability: carbon-poor and carbon-rich soils, respectively. Carbon-poor soils drove the enrichment of putative genes involved in organic matter decomposition and exhibited specialization in utilizing complex organic compounds, reflecting scramble competition. This specialization confers a competitive advantage of microbial communities in carbon-poor soils but reduces their buffering capacity in terms of organic carbon metabolisms, making them more vulnerable to environmental fluctuations. Additionally, in carbon-poor soils, viral auxiliary metabolic genes linked to organic carbon metabolism increased host competitiveness and environmental adaptability through a strategy akin to "piggyback the winner." Furthermore, putative antibiotic resistance genes, particularly in low-abundance drug categories, were enriched in carbon-poor soils as an evolutionary consequence of chemical warfare (i.e., interference competition). This raises concerns about the potential dissemination of antibiotic resistance from conventional agriculture that relies on chemical-only fertilization. Consequently, carbon starvation resulting from long-term chemical-only fertilization increases microbial adaptations to competition, underscoring the importance of implementing sustainable agricultural practices to mitigate the emergence and spread of antimicrobial resistance and to increase soil carbon storage.


Asunto(s)
Carbono , Suelo , Suelo/química , Carbono/metabolismo , Agricultura/métodos , Antibacterianos/farmacología , Farmacorresistencia Bacteriana , Microbiología del Suelo
11.
PLoS One ; 19(4): e0300387, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38635536

RESUMEN

Although biochar application to soils has been found to increase soil quality and crop yield, the biochar dispersion extent and its impacts on native soil organic carbon (SOC) has received relatively little attention. Here, the vertical and lateral migration of fine, intermediate and coarse-sized biochar (<0.5, 0.5-1 and 1-5 mm, respectively), applied at low and high doses (1.5-2 and 3-4% w/w, respectively), was tracked using stable isotope methods, along with its impact on native SOC stocks. Biochar was homogeneously mixed into the surface layer (0-7 cm depth) of a loamy sandy Acrisol in Zambia. After 4.5 y, 38-75% of the biochar carbon (BC) was lost from the applied layer and 4-25% was detected in lower soil layers (7-30 cm). Estimating BC mineralization to be no more than 8%, 25-60% was likely transported laterally out of the experimental plots. This conclusion was supported by observations of BC in the control plot and in soils up to 2 m outside of the experimental plots. These processes were likely progressive as recovery of BC in similar plots 1 year after application was greater in both surface and lower soil layers than after 4.5 y. Fine and intermediate-sized BC displayed the greatest downward migration (25.3 and 17.9%, respectively), particularly when applied at lower doses, suggesting its movement through soil inter-particle spaces. At higher dosages, fine and intermediate-sized particles may have clogged pore, so coarse biochar displayed the greatest downward migration when biochar was applied at higher doses. In the BC treatment plot soil profiles, native SOC stocks were reduced by 2.8 to 24.5% (18.4% on average), i.e. positive priming. However, some evidence suggested that the soils may switch to negative priming over time. The dispersion of biochar in soil should be considered when evaluating biochar's agronomic benefits and environmental effects.


Asunto(s)
Carbono , Suelo , Carbón Orgánico , Agricultura/métodos
12.
PeerJ ; 12: e16836, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38638155

RESUMEN

Maize and cowpea are among the staple foods most consumed by most of the African population, and are of significant importance in food security, crop diversification, biodiversity preservation, and livelihoods. In order to satisfy the growing demand for agricultural products, fertilizers and pesticides have been extensively used to increase yields and protect plants against pathogens. However, the excessive use of these chemicals has harmful consequences on the environment and also on public health. These include soil acidification, loss of biodiversity, groundwater pollution, reduced soil fertility, contamination of crops by heavy metals, etc. Therefore, essential to find alternatives to promote sustainable agriculture and ensure the food and well-being of the people. Among these alternatives, agricultural techniques that offer sustainable, environmentally friendly solutions that reduce or eliminate the excessive use of agricultural inputs are increasingly attracting the attention of researchers. One such alternative is the use of beneficial soil microorganisms such as plant growth-promoting rhizobacteria (PGPR). PGPR provides a variety of ecological services and can play an essential role as crop yield enhancers and biological control agents. They can promote root development in plants, increasing their capacity to absorb water and nutrients from the soil, increase stress tolerance, reduce disease and promote root development. Previous research has highlighted the benefits of using PGPRs to increase agricultural productivity. A thorough understanding of the mechanisms of action of PGPRs and their exploitation as biofertilizers would present a promising prospect for increasing agricultural production, particularly in maize and cowpea, and for ensuring sustainable and prosperous agriculture, while contributing to food security and reducing the impact of chemical fertilizers and pesticides on the environment. Looking ahead, PGPR research should continue to deepen our understanding of these microorganisms and their impact on crops, with a view to constantly improving sustainable agricultural practices. On the other hand, farmers and agricultural industry players need to be made aware of the benefits of PGPRs and encouraged to adopt them to promote sustainable agricultural practices.


Asunto(s)
Plaguicidas , Vigna , Humanos , Zea mays , Fertilizantes/microbiología , Agricultura/métodos , Productos Agrícolas , Suelo
13.
PLoS One ; 19(4): e0297784, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38603686

RESUMEN

Based on the integrated model of Super-SBM model, spatial Durbin model (SDM) and Grey neural network model, this paper analyzes the panel data of various provinces in China from multiple angles and dimensions. It was found that there were significant differences in eco-efficiency between organic rice production and conventional rice production. The response of organic rice to climate change, the spatial distribution of ecological and economic benefits and the impact on carbon emission were analyzed. The results showed that organic rice planting not only had higher economic benefits, but also showed a rising trend of ecological benefits and a positive feedback effect. This finding highlights the importance of organic rice farming in reducing carbon emissions. Organic rice farming effectively reduces greenhouse gas emissions, especially carbon dioxide and methane, by improving soil management and reducing the use of fertilizers and pesticides. This has important implications for mitigating climate change and promoting soil health and biodiversity. With the acceleration of urbanization, the increase of organic rice planting area shows the trend of organic rice gradually replacing traditional rice cultivation, further highlighting the potential of organic agriculture in emission reduction, environmental protection and sustainable agricultural production. To this end, it is recommended that the Government implement a diversified support strategy to encourage technological innovation, provide guidance and training, and raise public awareness and demand for organic products. At the same time, private sector participation is stimulated to support the development of organic rice cultivation through a public-private partnership model. Through these measures, further promote organic rice cultivation, achieve the dual goals of economic benefits and environmental benefits, and effectively promote the realization of double carbon emission reduction targets.


Asunto(s)
Gases de Efecto Invernadero , Oryza , Agricultura/métodos , Suelo , Agricultura Orgánica , China , Metano/análisis , Fertilizantes
14.
PLoS One ; 19(4): e0301108, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38603696

RESUMEN

This field experiment aimed to investigate the effects of different ratios of organic and inorganic fertilizers with maintaining equal nitrogen application rates on the yield, quality, and nitrogen uptake efficiency of Dioscorea polystachya (yam). Six treatments were set, including a control without fertilizer (CK), sole application of chemical fertilizer (CF), sole application of organic fertilizer (OM), 25% organic fertilizer + 75% chemical fertilizer (25%OM + 75%CF), 50% organic fertilizer + 50% chemical fertilizer (50%OM + 50%CF), and 75% organic fertilizer + 25% chemical fertilizer (75%OM + 25%CF). The experiment followed a randomized complete block design with three replications. Various yield parameters, morphology, quality indicators, and nitrogen utilization were analyzed to assess the differences among treatments. The results indicated that all fertilizer treatments significantly increased the yield, morphology, quality indicators, and nitrogen utilization efficiency compared to the control. Specifically, 25%OM + 75%CF achieved the highest yield of 31.96 t hm-2, which was not significantly different from CF (30.18 t hm-2). 25%OM + 75%CF exhibited the highest values at 69.23 cm in tuber length and 75.86% in commodity rate, 3.14% and 1.57% higher than CF respectively. Tuber thickness and fresh weight of 25%OM + 75%CF showed no significant differences from CF, while OM and 50%OM+50%CF exhibited varying degrees of reduction compared to CF. Applying fertilizer significantly enhanced total sugar, starch, crude protein, total amino acid, and ash contents of D. polystachya (except ash content between CK and OM). Applying organic fertilizer increased the total sugar, starch, crude protein, total amino acid, and ash contents in varying degrees when compared with CF. The treatment with 25%OM+75%CF exhibited the highest increases of 6.31%, 3.78%, 18.40%, 29.70%, and 10%, respectively. Nitrogen content in different plant parts followed the sequence of tuber > leaves > stems > aerial stem, with the highest nitrogen accumulation observed in 25%OM + 75%CF treatment. Nitrogen harvest index did not show significant differences among treatments, fluctuating between 0.69 and 0.74. The nitrogen apparent utilization efficiency was highest in 25%OM + 75%CF (9.89%), followed by CF (9.09%), both significantly higher than OM (5.32%) and 50%OM + 50%CF (6.69%). The nitrogen agronomic efficiency varied significantly among treatments, with 25%OM + 75%CF (33.93 kg kg-1) being the highest, followed by CF (29.68 kg kg-1), 50%OM + 50%CF (21.82 kg kg-1), and OM (11.85 kg kg-1). Nitrogen partial factor productivity was highest in 25%OM + 75%CF treatment (76.37 kg kg-1), followed by CF (72.11 kg kg-1), both significantly higher than 50%OM + 50%CF (64.25 kg kg-1) and OM (54.29 kg kg-1), with OM exhibiting significantly lower values compared to other treatments. In conclusion, the combined application of organic and inorganic fertilizers can effectively enhance the yield, quality, and nitrogen utilization efficiency of D. polystachya. Particularly, the treatment with 25% organic fertilizer and 75% chemical fertilizer showed the most promising results.


Asunto(s)
Dioscorea , Suelo , Suelo/química , Fertilizantes , Agricultura/métodos , Compuestos Orgánicos , Nitrógeno/metabolismo , Aminoácidos , Almidón , Azúcares
15.
PLoS One ; 19(4): e0298784, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38626056

RESUMEN

INTRODUCTION: As one of the agglomeration models targeting cluster-based rural development, cluster farming has been promoted in Ethiopia and it is already reported to have significant welfare implications, but participation rates are not as high as expected. This study examines the role of land as a constraint to the development of cluster-based development in Ethiopia both using extensive and intensive measures of cluster farming. The study further disaggregates farm households based on their farm size to better understand potential heterogeneities in the relationship between farm size and cluster farming. The paper also documents other household socio-economic and network characteristics that may matter in cluster farming. METHODS: We use a large-scale farm household data from 3,969 households coupled with some expert insights on cluster farming in Ethiopia. Households in the study areas grow major staples such as maize, wheat, teff, malt barley, and sesame in four main regions of Ethiopia. We employ a double hurdle model to examine both the decision to participate and the extent to which households participate in cluster farming. By extent of participation, we refer to the amount of land and share of land farm households contribute to cluster farming. For robustness purposes, we also estimate the Tobit and Linear Probability Models. RESULTS: We show a positive association between farm size and cluster farming both at the extensive and intensive margins. This relationship turns negative for large amounts of land. This shows that cluster farming increases with farm size up to a threshold beyond which it declines. We also find suggestive evidence that participation rates are lower for small-scale farms, but also declines for large-scale farms. In addition, we show that access to information and network characteristics also matter in enabling cluster farming. CONCLUSION: The findings of this study are relevant in the framework of plans to upscale the cluster-based development initiative in Ethiopia. Attention to landholding issues is key and may be an important area where policy action can be geared to boost cluster farming. Moreover, our results inform potential targeting plans that aim to increase the participation of small-scale farmers who are usually the intended targets of such programs.


Asunto(s)
Agricultura , Agricultores , Humanos , Etiopía , Agricultura/métodos , Granjas , Composición Familiar
16.
Sci Data ; 11(1): 329, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38570477

RESUMEN

To achieve resource efficiency, and carbon neutrality, it is vital to evaluate nutrient supply and gaseous pollutant emissions associated with field management of bio-straw resources. Previous straw yield estimates have typically relied on a constant grain-to-straw yield ratio without accounting for grain yield levels in a given region. Addressing this high-resolution data gap, our study introduces a novel empirical model for quantifying grain-to-straw yield, which has been used to gauge wheat straw field management practices at the city level during 2011-2015. Utilizing both statistical review and GIS-based methods, average nitrogen (N), phosphorus (P), and potassium (K) supplies from straw field management stood at 1510, 1229, and 61700 tons, respectively. Average emissions of PM2.5, SO2, NOx, NH3, CH4, and CO2 due to straw burning were 367, 41, 160, 18, 165, and 70,644 tons, respectively. We also reported uncertainty from Monte Carlo model as the 5th-95th percentiles of estimated nutrient supply and gaseous pollutant. These insights will provide foundational support for the sustainable and environmentally friendly management of wheat straw in China.


Asunto(s)
Contaminantes Atmosféricos , Contaminantes Ambientales , Agricultura/métodos , Contaminantes Atmosféricos/análisis , China , Gases/análisis , Suelo , Triticum
17.
PLoS One ; 19(4): e0299054, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38574027

RESUMEN

Wheat straw returning is widely practiced in agriculture; therefore, it is critical to determine the physicochemical and bacterial indicators in soil for the organic carbon storage, accumulative C mineralization, total nitrogen improvement, and nitrogen mineralization in various soil types after wheat straw returning. This study evaluated the influenced indicators of wheat straw addition on soil organic carbon and nitrogen transformation in diverse soil types. For this purpose, an incubation experiment was conducted to analyze the carbon and nitrogen transformation in soil from eight Chinese provinces treated with the same dry weight of wheat straw. The results indicated that the primary physicochemical and bacterial indicators that predict the carbon and nitrogen transformations in the acidic and alkaline soils were different. Of all the natural physicochemical properties of soil, cation exchange capacity and clay content were significantly correlated with organic carbon, mineralized carbon, total nitrogen, and mineralized nitrogen in the alkaline soil. In the acidic soil, the initial C/N ratio of soil was the most significant indicator of carbon and nitrogen transformation. From the perspective of the carbon- and nitrogen-relating bacterial communities, Proteobacteria were largely responsible for the accumulative C mineralization in both types of soil. Furthermore, Proteobacteria strongly regulated the organic carbon storage in the acidic soil after wheat straw addition, whereas Gemmatimonadetes was the main predicted indicator in the alkaline soil. Additionally, total nitrogen and mineralized nitrogen levels were largely explained by Bifidobacterium and Luteimonas in the alkaline soil and by Nitrospira and Bdellovibrio in the acidic soil. Soil physicochemical and biological properties significantly influence soil carbon and nitrogen transformation, which should be considered crucial indicators to guide the rational regulation of straw return in several areas.


Asunto(s)
Carbono , Suelo , Suelo/química , Triticum , Nitrógeno/análisis , Agricultura/métodos , Bacterias , Proteobacteria , Fertilizantes
18.
Recent Pat Biotechnol ; 18(3): 257-266, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38528667

RESUMEN

BACKGROUND: The forthcoming problems will be of food, and soil due to environmental alteration, growing populations, pollution, and exhaustion of natural resources among other factors. Hydroponic farming has the capacity to alleviate the intimidation of these con-cerned issues in the agricultural system. Hydroponics is recommended as an alternative way to enhance product yield compared to conventional agriculture. OBJECTIVE: The present study aimed to determine the different growth parameters and constituents of soil-grown and hydroponically grown Trachyspermum ammi and Foeniculum vulgare for the first time, which could be a patentable in future. METHODS: In this study, extraction was carried out by maceration method using methanol as a solvent whereas, growth parameters were performed by the leaves number, plant height, and leaf area. Chlorophyll content was also performed in both sources. Further, a comparison of chemical constituents from different sources was analyzed by GC-MS. RESULTS: The bioactive components in hydroponically grown T. ammi were found more as compared to soil-grown T. ammi. The GC-MS analysis revealed the presence of various compounds in the methanolic extract of plant materials. CONCLUSION: Hence, hydroponics could be an alternative in agriculture and this system is now accepted globally. This method provides diverse perspectives for farmers to harvest high-yield, better quality, and enhanced bioactive compounds.


Asunto(s)
Ammi , Foeniculum , Hidroponía , Suelo/química , Ammi/química , Estudios Prospectivos , Patentes como Asunto , Agricultura/métodos
19.
Sci Total Environ ; 926: 171862, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38527538

RESUMEN

Through the advancement of nanotechnology, agricultural and food systems are undergoing strategic enhancements, offering innovative solutions to complex problems. This scholarly essay thoroughly examines nanotechnological innovations and their implications within these critical industries. Traditional practices are undergoing radical transformation as nanomaterials emerge as novel agents in roles traditionally filled by fertilizers, pesticides, and biosensors. Micronutrient management and preservation techniques are further enhanced, indicating a shift towards more nutrient-dense and longevity-oriented food production. Nanoparticles (NPs), with their unique physicochemical properties, such as an extraordinary surface-to-volume ratio, find applications in healthcare, diagnostics, agriculture, and other fields. However, concerns about their potential overuse and bioaccumulation raise unanswered questions about their health effects. Molecule-to-molecule interactions and physicochemical dynamics create pathways through which nanoparticles cause toxicity. The combination of nanotechnology and environmental sustainability principles leads to the examination of green nanoparticle synthesis. The discourse extends to how nanomaterials penetrate biological systems, their applications, toxicological effects, and dissemination routes. Additionally, this examination delves into the ecological consequences of nanomaterial contamination in natural ecosystems. Employing robust risk assessment methodologies, including the risk allocation framework, is recommended to address potential dangers associated with nanotechnology integration. Establishing standardized, universally accepted guidelines for evaluating nanomaterial toxicity and protocols for nano-waste disposal is urged to ensure responsible stewardship of this transformative technology. In conclusion, the article summarizes global trends, persistent challenges, and emerging regulatory strategies shaping nanotechnology in agriculture and food science. Sustained, in-depth research is crucial to fully benefit from nanotechnology prospects for sustainable agriculture and food systems.


Asunto(s)
Nanoestructuras , Suelo , Conservación de los Recursos Naturales , Ecosistema , Análisis de Peligros y Puntos de Control Críticos , Agricultura/métodos , Nanotecnología/métodos , Plantas , Fertilizantes/análisis
20.
Sci Total Environ ; 926: 171948, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38527545

RESUMEN

The exponential growth of the global population has resulted in a significant surge in the demand for food worldwide. Additionally, the impact of climate change has exacerbated crop losses caused by pests and pathogens. The transportation and utilization of traditional agrochemicals in the soil are highly inefficient, resulting in significant environmental losses and causing severe pollution of both the soil and aquatic ecosystems. Nanotechnology is an emerging field with significant potential for market applications. Among metal-based nanomaterials, copper-based nanomaterials have demonstrated remarkable potential in agriculture, which are anticipated to offer a promising alternative approach for enhancing crop yields and managing diseases, among other benefits. This review firstly performed co-occurrence and clustering analyses of previous studies on copper-based nanomaterials used in agriculture. Then a comprehensive review of the applications of copper-based nanomaterials in agricultural production was summarized. These applications primarily involved in nano-fertilizers, nano-regulators, nano-stimulants, and nano-pesticides for enhancing crop yields, improving crop resistance, promoting crop seed germination, and controlling crop diseases. Besides, the paper concluded the potential impact of copper-based nanomaterials on the soil micro-environment, including soil physicochemical properties, enzyme activities, and microbial communities. Additionally, the potential mechanisms were proposed underlying the interactions between copper-based nanomaterials, pathogenic microorganisms, and crops. Furthermore, the review summarized the factors affecting the application of copper-based nanomaterials, and highlighted the advantages and limitations of employing copper-based nanomaterials in agriculture. Finally, insights into the future research directions of nano-agriculture were put forward. The purpose of this review is to encourage more researches and applications of copper-based nanomaterials in agriculture, offering a novel and sustainable strategy for agricultural development.


Asunto(s)
Cobre , Plaguicidas , Cobre/análisis , Ecosistema , Agricultura/métodos , Plaguicidas/análisis , Nanotecnología/métodos , Fertilizantes/análisis , Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...